

ErieGarbage

 ErieGarbage Customer Manager
 Coding and Testing Document

Version 1.1

TEAM MEMBERS

Name Student ID

Allison Steinmetz 989643309
Mason Toy 920754627

Daniel Lopez 961382718

©ErieGarbage, 2016 Page 1

ErieGarbage

Revision History
Date Version Description Author

11/29/16 1.0 Creating Base Templates Mason
12/2/16 1.0 Set up document.

Updated Class Diagram and section
3.2.

Allison

12/3/16 1.0 Static Analysis, Modifying sections and
finishing sections.

Mason, Allison

12/4/16 1.0 Updated Class Diagram. Completed
sections 1 and 3. Updated sections 2
and 4.1. Finishing Static Analysis

Allison, Mason, Daniel

12/5/16 1.0 Added information for section 4 and
modified static analysis

Allison, Daniel

12/7/16 1.1 Updated Section 3.2 and added section
3.3

Allison

12/8/16 1.1 Completed section 3.3 and update
class diagram

Allison, Mason, Daniel

12/9/16 1.1 Updated class diagram and added
descriptions

Allison, Daniel

©ErieGarbage, 2016 Page 2

ErieGarbage

Table of Contents
1. Introduction

1.1. Purpose
1.2. Scope
1.3. Definitions, Acronyms, and Abbreviations
1.4. References
1.5. Overview

2. Static Analysis
3. Code Documentation

3.1. Class Diagram
3.2. Class Descriptions
3.3. Method Descriptions

4. Testing Results
4.1. Testing Approaches
4.2. Found Bugs

5. Team Members Log Sheets
5.1. Mason Toy
5.2. Allison Steinmetz
5.3. Daniel Lopez

©ErieGarbage, 2016 Page 3

ErieGarbage

Coding and Testing Document

1. Introduction

1.1 Purpose
The purpose of this document is to present in detail the coding and testing results for ErieGarbage
Customer Manager. The coding part focuses on the static analysis of the code and documentation of the
code including the class diagram and the documented security information on each class and its
methods. The testing portion consists of the approaches used, the bugs found by testing and how these
bugs were dealt with.

1.2 Scope
The Coding and Testing (CT) Document will detail the coding design and testing done on the
ErieGarbage Customer Manager. The classes of the application are outlined with security analysis. The
methods of testing and example test cases and their reports are shown.

1.3 Definitions, Acronyms, and Abbreviations

1.3.1 Definitions

Encrypt: To convert data into cipher text, with purpose of controlling access to it.
Decrypt: Convert cipher text to plain data, releasing access control.

1.3.2 Acronyms and Abbreviations

GUI – Graphical User Interface
SRS – Software Requirements and Specifications
Admin – Administrator
HTML – Hypertext Markup Language
PaS – Platform as a Service
CIA – Confidentiality, Integrity, Availability
RUP – Rational Unified Process
EGCM – ErieGarbage Customer Management

 XSS – Cross Site Scripting
 DoS – Denial of Service
 MITM – Man in the Middle (Attack)

1.4 References

1.5 Overview
The introduction of the document provides an overview of the entire document. It includes the purpose,
scope, definitions, acronyms, abbreviations, references, and an overview of this document.

The remainder of this document is split into three main parts: code static analysis, code documentation
and testing results. The static analysis (section 2) give an overview of the results of the code’s static
analysis. The code documentation (section 3) outlines the class diagram consisting of all of the classes

©ErieGarbage, 2016 Page 4

ErieGarbage

with their variables and methods, as well as the security analysis for each class. Finally, the testing
results (section 4) covers the methods of testing used for the EGCM and the results of the tests.

2. Static Analysis
After doing a bit of research on Static Security Analysis tools we found the application
VisualCodeGrepper. This application supports a wide range of programing languages including C++,
Java, SQL, C# and most importantly for this project PHP. After running a quick run on all of the PHP files
there was one flaw generated for the code at this time, this is shown in Figure 2.1. The application tells
the user what kind of security risks are associated and what line in what file the risk is generated from.

Figure 2.1

The static analysis resulted in a summary shown in Figure 2.1. The highest priority risks of level six,
indicate potentially unfinished code given that the tool encountered a comment, yet there is no absence of
needed code in the function. There are other warnings regarding utilizing a variable name for fopen,
which can lead to security concerns. However, given the implementation, the function that provides that
functionality is private and only accessible to the DatabaseController, which minimizes its risk.

The rest of warnings include the md5 hashing algorithm, which is utilized for hashing authentication
values, and potential XSS for outputting unvalidated variables using echo. The hashing issue can be
solved by utilizing a more secure hashing algorithm, such as SHA-1. Secondly, since the variables
pointed out by VisualCodeGrepper are mostly static HTML templates for the layout, these should be
declared immutable.

©ErieGarbage, 2016 Page 5

ErieGarbage

 Figure 2.2: VisualCodeGrepper Visualization

As a whole, the software seems to be good in terms of static analysis. The chart, seen in Figure 2.2,
visualizes the safety of all lines of code. It shows that only 30 out of 2016 lines are potentially dangerous.
An additional two potentially broken/unfinished flags have been detected but upon further analysis, were
seen to be a false alarm.

©ErieGarbage, 2016 Page 6

ErieGarbage

3. Code Documentation
3.1 Class Diagram

The class diagram shown in Figure 3.1 displays our view class. Each view has its own class that
inherits the header and footer from the AbstractView class.

Figure 3.1: View

©ErieGarbage, 2016 Page 7

ErieGarbage

Figure 3.2 shows the controller classes. The ClientController and the AdminController will
communicate with the DatabaseController to create and retrieve data in the database.

Figure 3.2: Controllers

©ErieGarbage, 2016 Page 8

ErieGarbage

Figure 3.3 displays the model package. It contains all of the data model classes needed in the
system. Each class consists of the private needed variables and public methods to create and
modify the values.

Figure 3.3: Model (server)

©ErieGarbage, 2016 Page 9

ErieGarbage

3.2 Class Description
3.2.1 View Subclasses
The view subclasses do not have any variables because they inherit all the variables necessary from the
abstract View superclass a view that does not contain any data.
For each of the view classes, they will have the following values:

Protected Data
Class does not contain any protected data (Except for the abstract View. The abstract
View class has a header and footer variable.)

Authentication Procedures
Upon construction, every view instantiates a ClientController, who calls its
authenticateToken function upon construction, which automatically attempts to
authenticate the client using a cookie stored token to determine what content should be
displayed.

Functions that Change Values of Data
The only variables are the header and footer and they do not change.

Functions that Reveal Data
The functions getHeader and getFooter will reveal the header and footer for the view.

Minimum Guarantee of Security
The view can only make calls to functions on the ClientController to which they are
authorized.

3.2.2 Controllers
3.2.2.1 ClientController

Protected Data
DatabaseController databaseController
Bool authenticated
User activeAccount
String permissions;

Authentication Procedures
Upon construction, the internal authenticateToken function is called, which attempts to
authenticate the client by its authentication token stored in a cookie. Functionality is
limited by permissions.

Functions that Change Values of Data
authenticateToken authenticates the user and sets the local protected activeAccount
member to the account returned from the databaseController's authenticateToken
function.

Functions that Reveal Data
authenticateToken: the currentUser will be returned, revealing the User object to the

class
loadPickupTimes: the pickup times will be loaded from a json file and return by the

databaseController
getActiveAccount: returns the protected activeAccount local variable

Minimum Guarantee of Security
No data will be revealed or changed unless authenticated.

3.2.2.2 AdminController
Protected Data

All data is inherited from the ClientController superclass
Authentication Procedures

©ErieGarbage, 2016 Page 10

ErieGarbage

All authentication procedures are inherited from the superclass.
Functions that Change Values of Data

createAndRegisterAdminAccount: triggers a data change in DatabaseController
createBillForUser: triggers a data change in DatabaseController

Functions that Reveal Data
Functions inherited by ClientController
findCustomer: reveals the customer account object associated with first name and last

name or email
Minimum Guarantee of Security

No data will be revealed or changed unless authenticated. No functionality is available for
non-administrators.

3.2.2.3 DatabaseController
Protected Data

A series of private static functions containing constant file paths is stored in this class.
Array failedLogins
Bool authenticated;
Account activeAccount
String permissions

Authentication Procedures
Low level authentication functions called by the ClientControllers are available publically.

These also authenticate the DatabaseController to only allow functionality for the relevant
permission level, as the DatabaseController is an instance of the ClientController.
Functions that Change Values of Data

authenticateToken: sets the local permission variable based on the client's authentication
markInvalidLogin: marks a client's invalid login onto the json file for request limiting
setUserPermission: sets the currently authenticated user's permission to user in the

permissions json file
setAdminPermission: sets the currently authenticated admin's permission to admin in the

permissions json file
deleteAccount: delete account associated with account number if invoked by an admin
deleteActiveAccount: deletes the actively authenticated account
overwriteFile: overwrites a variable file with variable data (private)

Functions that Reveal Data
authenticateToken: returns the user account associated
readFile: reads a private file (private)
accountExists: returns if the account number corresponds to an active account

Minimum Guarantee of Security
No data will be revealed or changed unless proper authentication provides relevant
permissions..

3.2.2.4 DatabaseCommunicator
This class contains a lot of queries to retrieve the needed data for each view.

Protected Data
This class does not contain any protected data.

Authentication Procedures
There are no authentication procedures for this class.

Functions that Change Values of Data
The queries will not change the value of any of the data.

Functions that Reveal Data

©ErieGarbage, 2016 Page 11

ErieGarbage

The queries will return the searched for data from the database.
Minimum Guarantee of Security

The class does not own data, and therefore does not require a minimum guarantee of
security to access it.

3.2.3 Models
3.2.3.1 Account

Protected Data
String firstName
String lastName
String email
Hash<string, string> authValue
String accountNumber
Account accountType

Authentication Procedures
The authValue will be used to authenticate the user or admin. Once authenticated, the
protected data can be revealed.

Functions that Change Values of Data
updateAccount can update the values of firstName, lastName, email and password.
There are also setter methods for accountNumber and accountType. The wipe function
will reset all the values in the class.

Functions that Reveal Data
There are get methods to get the values for accountNumber, firstName, lastName, and
email. exportJSON will return a JSON revealing firstName, lastName, email,
accountNumber and accountType.

Minimum Guarantee of Security
No data will be revealed externally or changed until authenticated.

3.2.3.2 User
Protected Data

Address address
Bill[] bills
Complaint[] complaints
Dispute[] disputes
Payment[] paymentTypes
It also inherits protected data from Account.

Authentication Procedures
The authValue will be used to authenticate the user. Once authenticated, the protected
data can be revealed.

Functions that Change Values of Data
The constructor sets firstName, lastName, email, password and address. It also creates
empty arrays for bills, complaints, disputes and paymentTypes. removePayment will
update the paymentTypes by deleting a payment from the array. It also inherits the ability
to updateAccount to update the user’s firstName, lastName, email or password. The wipe
function will reset all the values in the class.

Functions that Reveal Data
The inherited get methods from Account will still work to get the values of the inherited
variables. exportJSON will return a JSON revealing firstName, lastName, email,

©ErieGarbage, 2016 Page 12

ErieGarbage

accountNumber, accountType, bills, address, complaints and disputes. AllPayments will
return the list of all the paymentTypes.

Minimum Guarantee of Security
No data will be revealed externally or changed until authenticated.

3.2.3.3 Admin
Protected Data

Inherits protected data from Account.
Authentication Procedures

The authValue will be used to authenticate the admin. Once authenticated, the protected
data can be revealed.

Functions that Change Values of Data
The constructor sets firstName, lastName, email and password. updateAccount will also
affect these values. It also inherits the ability to updateAccount to update the admin’s
firstName, lastName, email or password. The wipe function will reset all the values in the
class.

Functions that Reveal Data
The inherited get methods from Account will still work to get the values of the inherited
variables.
exportJSON will return a JSON revealing firstName, lastName, email, accountNumber
and accountType.

Minimum Guarantee of Security
No data will be revealed externally or changed until authenticated.

3.2.3.4 Complaint
Protected Data

User userInvolved
Admin[] admins
String description
String[] responses

Authentication Procedures
The user or admin must be authenticated and have a loggedIn value in its controller of
true to reveal or modify the data.

Functions that Change Values of Data
The constructor sets the userInvolved and the description. A response can be added with
an admin with an addResponse method.

Functions that Reveal Data
There are getter methods for all the data so that both the user and admin clients can view
the complaint descriptions and responses with their corresponding user and admins.

Minimum Guarantee of Security
No data will be revealed or changed until authenticated. The complaint can only be
created by a user.

3.2.3.5 Address
Protected Data

String streetAddress
Int zipCode
String cityName

Authentication Procedures
The user must be authenticated and have a loggedIn value in its controller of true to
reveal or modify the data.

©ErieGarbage, 2016 Page 13

ErieGarbage

Functions that Change Values of Data
Values of variables can be set with setter methods or in the constructor. These methods
can only be accessed by the user class.

Functions that Reveal Data
There are getter methods for streetAddress, zipCode and cityName.

Minimum Guarantee of Security
No data will be revealed or changed until authenticated. The address data can only be
modified by a user.

3.2.3.6 Bill
Protected Data

User user
Double amount
Boolean isPaid

Authentication Procedures
The user or admin must be authenticated and have a loggedIn value in its controller of
true to reveal or modify the data.

Functions that Change Values of Data
The constructor will set the user and amount. isPaid has a setter method to update its
value.

Functions that Reveal Data
Each variable has a getter method to retrieve that value.

Minimum Guarantee of Security
No data will be revealed or changed until authenticated.

3.2.3.7 Dispute
Protected Data

Bill billInvolved
Authentication Procedures

The user or admin must be authenticated and have a loggedIn value in its controller of
true to reveal or modify the data.

Functions that Change Values of Data
The billInvolved is set in the constructor for the dispute. It also inherits all of the variables
of a complaint, meaning the constructor sets the userInvolved and the description and a
response can be added with an admin with an addResponse method.

Functions that Reveal Data
The billInvolved can not change after the bill is created. There are getter methods for all
of the inherited data so that both the user and admin clients can view the dispute
descriptions and responses with their corresponding user and admins.

Minimum Guarantee of Security
No data will be revealed or changed until authenticated. The dispute can only be created
by a user.

3.2.3.8 PaymentAbstract
Protected Data

String paymentType
Authentication Procedures

The user or admin must be authenticated and have a loggedIn value in its controller of
true to reveal the data.

Functions that Change Values of Data
Constructor will set the paymentType.

©ErieGarbage, 2016 Page 14

ErieGarbage

Functions that Reveal Data
getPaymentType will return paymentType.

Minimum Guarantee of Security
No data will be revealed or changed until authenticated.

3.2.3.9 Check
Protected Data

String checkFrom
String checkTo
Double amount
Int checkNum

Authentication Procedures
The user or admin must be authenticated and have a loggedIn value in its controller of
true to reveal the data.

Functions that Change Values of Data
The constructor sets all of the protected variables and can not be changed afterwards.

Functions that Reveal Data
There are getter methods for all of the protected variables.

Minimum Guarantee of Security
No data will be revealed or changed until authenticated. Only a user account can modify
the data, however both admin and users can view the data.

3.2.3.10 CreditCard
Protected Data

String cardHolder
String cardCompany
Int cardNumber

Authentication Procedures
The user or admin must be authenticated and have a loggedIn value in its controller of
true to reveal the data.

Functions that Change Values of Data
The constructor sets all of the protected variables and can not be changed afterwards.

Functions that Reveal Data
There are getter methods for all of the protected variables.

Minimum Guarantee of Security
No data will be revealed or changed until authenticated. Only a user account can modify
the data, however both admin and users can view the data.

3.2.3.11 DebitCard
Protected Data

String cardHolder
String cardCompany
Int cardNumber

Authentication Procedures
The user or admin must be authenticated and have a loggedIn value in its controller of
true to reveal the data.

Functions that Change Values of Data
The constructor sets all of the protected variables and can not be changed afterwards.

Functions that Reveal Data
There are getter methods for all of the protected variables.

Minimum Guarantee of Security

©ErieGarbage, 2016 Page 15

ErieGarbage

No data will be revealed or changed until authenticated. Only a user account can modify
the data, however both admin and users can view the data.

3.3 Method Descriptions
3.3.1 ClientController
3.3.1.1 changeView

Minimum Expectation of Input
The new AbstractView that they would like to change to.

Output Information
currentView will be updated with the inputted view.

Error Output
An error will appear stating “Unable to change view.”

External Resources
The method to get the view of the newView will be called.

Fail State Result
The view will remain on the same page and not change to the newView.

Required Variable Names
newView

Required Variable Data Types
AbstractView newView

Optional Variable Names
None

Optional Variable Data Types
None

Access Type of Variables
newView - copy

3.3.1.2 updateView

Minimum Expectation of Input
None

Output Information
The information in the view will be updated with the latest information.

Error Output
An error will appear stating “Unable to update view.”

External Resources

Fail State Result

The view will remain the same without updating the data in the view.
Required Variable Names

None
Required Variable Data Types

None
Optional Variable Names

None
Optional Variable Data Types

None
Access Type of Variables

©ErieGarbage, 2016 Page 16

ErieGarbage

None

3.3.1.3 createUser

Minimum Expectation of Input
String inputs of a firstname, lastname, email, and password are the minimum expected
input.

Output Information
The function returns a boolean value of whether or not the new user was created.

Error Output
If a user already exists with the entered email, the system will display an error stating
“The email entered already has an account.” If the user enters a password that does not
meet the criteria, the system displays an error stating “Please enter a valid password”.

External Resources
The constructor method of the user class will be called to create the new user.

Fail State Result
The system displays “The user account was not created” and the user is not created.

Required Variable Names
F, l, email, password

Required Variable Data Types
All variables are strings

Optional Variable Names
None

Optional Variable Data Types
None

Access Type of Variables
F - copy
L - copy
Email - copy
Password - copy

3.3.1.4 sendLogin

Minimum Expectation of Input
The email and password.

Output Information
The user that has the email and password matching the inputs. LoggedIn value is set to
true.

Error Output
If no user has a matching email and password combination, the system displays an
stating “Incorrect username or password.”.

External Resources
Must use authenticate method to check if the user exists

Fail State Result
User is not logged in and remains at the LoginView. LoggedIn value remains false.

Required Variable Names
Email and password

Required Variable Data Types
String email
String password

©ErieGarbage, 2016 Page 17

ErieGarbage

Optional Variable Names
None

Optional Variable Data Types
None

Access Type of Variables
Email - copy
Password - copy

3.3.1.5 Authenticate

Minimum Expectation of Input
An email and password.

Output Information
Returns a true if a user is found with a matching email and password combination.

Error Output
If no user has a matching email and password combination, the system displays an
stating “Incorrect username or password.”.

External Resources
Will check to see if a user object in the database that matches with the email and
password combination.

Fail State Result
Returns false

Required Variable Names
Email and password

Required Variable Data Types
String email
String password

Optional Variable Names
None

Optional Variable Data Types
None

Access Type of Variables
Email - copy
Password - copy

3.3.1.6 payBill

Minimum Expectation of Input
The user and the bill they would like to see.

Output Information
Updates the actionSuccessful value to true to signify that the bill has been paid. Updates
bill as paid in the database.

Error Output
The system displays an error stating “The bill was unable to be paid at this time. Please
try again later.”

External Resources
The isPaid value is set to true for the bill in the database.

Fail State Result
The function will return false and set the actionSuccessful value to false. The isPaid value
for the bill will remain unchanged.

©ErieGarbage, 2016 Page 18

ErieGarbage

Required Variable Names
User and bill

Required Variable Data Types
User user
Bill bill

Optional Variable Names
None

Optional Variable Data Types
None

Access Type of Variables
User - reference
Bill - reference

3.3.1.7 fileComplaint

Minimum Expectation of Input
The user and description.

Output Information
Creates a new complaint stored in the database. Updates the actionSuccessful value to
true to signify that the complaint was filed successfully.

Error Output
The system displays an error stating “The complaint was unable to be filed at this time.
Please try again later.”

External Resources
The constructor for the complaint class will be called to create a new complaint and store
it to the database.

Fail State Result
The function will return false and set the actionSuccessful value to false. The complaint
will not be added to the database.

Required Variable Names
User and desc

Required Variable Data Types
User user
String desc

Optional Variable Names
None

Optional Variable Data Types
None

Access Type of Variables
User - reference
Desc - copy

3.3.1.8 fileDispute

Minimum Expectation of Input
The user, description and the bill involved.

Output Information
Creates a new dispute stored in the database. Updates the actionSuccessful value to
true to signify that the dispute was filed successfully.

Error Output

©ErieGarbage, 2016 Page 19

ErieGarbage

The system displays an error stating “The dispute was unable to be filed at this time.
Please try again later.”

External Resources
The constructor for the dispute class will be called to create a new dispute and store it to
the database.

Fail State Result
The function will return false and set the actionSuccessful value to false. The dispute will
not be added to the database.

Required Variable Names
User, desc, and bill

Required Variable Data Types
User user
String desc
Bill bill

Optional Variable Names
None

Optional Variable Data Types
None

Access Type of Variables
User - reference
Desc - copy
Bill - reference

4. Testing Results
4.1 Testing Approaches
The three types of testing we used were unit, integration and penetration testing. Unit testing exercises
individual functions, methods, classes, or stubs. This is testing each individual component to ensure that it
does what it is supposed to and is done so securely. Integration testing focuses on a collection of
subsystems, which may contain many executable components. So this is testing how different pieces of
the code interact with one another and if they do so in a secure way. Penetration testing allows project
managers to assess how an attacker is likely to try to subvert a system. This means testing the security of
a computer system and/or software application by attempting to compromise its security.

4.1.1 Unit Testing
All model classes’ functionalities were tested individually before focus on the DatabaseController. Each
model class provided the proper functionality free of errors. The DatabaseController cannot be properly
unit tested as it's most basic functionality involves interacting with multiple objects. The validator class,
which deals with validating all external input, should be further tested with more elabore unit testing to
assure no malicious scripts can sneak past the filters and exploit the server.

4.1.2 Integration Testing
A custom class was designed for simple integration testing of the main controller's core functionality.
Although no frameworks were utilized to enhance the testing results, the class has simple outputs
comparing the functions expected output versus actual output. Through this, an issue regarding the
storage and reading of associative PHP arrays came to light, as when json objects were loaded from the
disk, they no longer contained the class functions or even belonged to the class. Through this testing,
unrecognizable buggy behavior became clear and a fix was put in place to prevent calling a function from

©ErieGarbage, 2016 Page 20

ErieGarbage

a standard class object. More integration testing is necessary to be able to assure the integrity of the
system as a whole.

4.1.3 Penetration Testing
In order to prepare the web application for real world attackers, one must test the system as one.
Therefore, a series of penetration tests were performed on the ErieGarbage system to assess its
strengths and weaknesses.

4.1.3.1 Brute-force Attacks
Brute-force attacks were the largest weakness in this application. A user was able to make an infinite
amount of requests with no lockout limit. However, a framework is now in place to handle excessive
subsequent invalid requests. This removes the possibility of an attacker trying as many email and
password combinations as desired, with hopes of finding a match.

An attacker, however, can attempt to enumerate all directories and/or files in the server, with hopes of
finding hidden information in the server. The mitigation in place only applies to user requests to PHP
code, not to the Apache web server hosting the site.

On the default configuration of apache, if a client
visited a directory URL, apache would list the
contents of the entire directory, and allow looking at
any of the files. A client would be presented with the
interface on Figure 4.1 to and be able to traverse
every directory within the server root. Via this
interface, an attacker can obtain internal knowledge
of system organization, the version of apache that is
currently running, and even access any of the
sensitive credentials file much like credentials.json on
Figure 4.2, containing all account's hashes and ids in
an associated array.

 Figure 4.1: Apache Directory Indexing

Figure 4.2: Reading Sensitive Information from Browser

Thankfully, the directory indexing issue was very easily solved by correctly configuring the Apache
configuration files to disable the option.

©ErieGarbage, 2016 Page 21

ErieGarbage

Figure 4.3: Apache Configuration Changes

Figure 4.3 shows the highlighted option to be deleted to disable indexing for the root of the web server
(/var/www). This modification redirects users to a forbidden page whenever they attempt to visit a
directory.

Now, in order to restrict access to the store files, the file structure of the project was modified to keep the
store folder outside of the server hosted files, disallowing direct client access to critical files that should
only be accessed by the server. Only one line of code in the database controller was updated.

4.1.3.2 Traffic Analysis
In order to assure the message exchange between server and client is as expected, BurpSuite by
PortSwigger was utilized to analyze the requests sent back and forth. For this tool, HTTPS has to be
disabled, rendering all exchanged data as plain text. Through this, the plain-text password and email for a
login request and the authentication cookie are clearly visible, as shown in Figure 4.1.

Figure 4.4: Unencrypted Client Login HTTP Request

The server then retrieves than information, and upon successful authentication, sends back an
authentication token object to be stored in the user's browser as a cookie. We can assert there is no
sensitive information other than a randomized token and an account number in the token by taking a look
at the server's response in Figure 4.5, with the authentication token's parsed values in Figure 4.6.

©ErieGarbage, 2016 Page 22

ErieGarbage

Figure 4.5: Server Successful Login HTTP Response

Figure 4.6: Authentication Token Values

If an attacker managed to intercept the value of this cookie, he could successfully hijack the client's
session. However, with the final configuration of the system and the HTTPS protocol in place using SSL,
public key encryption is utilized, rendering attackers' sniffing attacks void.

An attacker could still compromise the client's system, and steal the token, hijacking the session, but
current expiry date of (15) minutes for each token minimizes the risk. Because of this, clients are
redirected to the login page every fifteen minutes.

4.1.3.3 Fuzz Testing
The most probable place for code injection to take place is the login screen to which anyone has access.
However, fuzz testing resulted in no erroneous behavior. The user is simply let know that authentication
failed, and can try again.

4.2 Found Bugs
Many bugs were encountered throughout the coding and testing process. The major ones are
documented in Figure 4.7 below, along with an assessment of risk and the mitigation plan or action taken.

Bug Risks Assessment Mitigation

1 Insecure usage of MD5 hashing
algorithm in controllers for

credentials

A leakage of hashed credentials can be
easily cracked using brute-force,

especially weak passwords..

Use PHP's built-in password_hash
function using the secure bcrypt

algorithm (as of PHP version 5.5).

2 Broken invalid authentication limit
for request origin IP address

A user can bruteforce any inputs in the
server, including credentials.

The authenticator limiter's
implementation has been fixed.

3

After a client is timed out for
sending (5) incorrect login requests,

login failed is shown on following
requests, rather than timeout.php.

Client can actively fail to log in with no
knowledge of being locked out, further

getting locked out for even longer, or even
believe his credentials are wrong.

The login method verifying request
limits was modified to redirect to
timeout.php whenever the limit is

exceeded.

4

Directory indexing is enabled, clients
can and list and access all files

Clients can enumerate all files, better
understand the system, and directly attack

weak point or files.

Modify apache's configuration to
disable indexing.

©ErieGarbage, 2016 Page 23

ErieGarbage

5

Credentials store accessible via
known url

Clients can read credentials, permissions,
and account files, resulting in potential

information and/or password hash leaks

Re-locate the store directory to be
outside of the server root.

6

Figure 4.7: Encountered Bugs

4.3 Logged Error Messages
The ErieGarbage system logs system behavior via the Logger class in the /store/management/log.txt file.
Error messages within are described in more detail in Figure 4.8 below.

Error Message Cause Potential Solutions

1

Failed to load account

Account number from authenticated file does
not correspond to an existing account JSON

file, or the entry in the credentials file
corresponds to a non-existing account number.

1. Create the account entry in
/store/accounts/{accountNumber}.json

2. Remove the user credentials from
/store/accounts/credentials.json

2

Failed to read credentials

Credentials file could be missing or read/write
privileges for the system could be wrong

1. Validate the credentials.json file in
/store/credentials/credentials.json

2. Fix execution system privileges

3

Failed to read failed logins

Failed logins file (for request timeouts) can be
missing, corrupt, or system privileges are

misset.

1. Validate the login-limiter.json file in
/store/credentials/login-limiter.json

2. Fix execution system privileges

4

Failed to read tokens file

Tokens file might be corrupt/missing or
read/write privileges for system can be off

1. Validate the tokens.json file in
/store/credentials/tokens.json

2. Fix execution system privileges

5 Invalid input provided The client provided illegal input, no risk, just
informational logging

No solution, already solved.

6 Request limit for account
exceeded

The client attempting to authenticate exceeded
their invalid request limit.

Client should wait (15) minutes for the
timeout to expire.

7 Failed to load permissions
file

The server failed to load the permissions file,
permissions for users cannot be verified

1. Validate the tokens.json file in
/store/credentials/permissions.json

2. Fix execution system privileges

8 Invalid account type loaded Tampering with account file store took place,
system may be compromised.

Validate the associated account .json
object and its account type property.

9 Account file attempted to
delete does not exist

Tampering with account file may have taken
place, system may be compromised

Validate the credentials file, accounts file,
and permissions file for ghost accounts.

(accounts not existing in all files)

10 Permission denied Client attempted to access unauthorized
functionality

No solution, already solved.

11

Token mismatch

The auth token supplied in the client browser's
cookie does not match the one in store.

Can be caused by a client tampering with the
cookies.

If not caused by an attacker, or a user
tampering with cookies, must be an

implementation issue.

Figure 4.8: Error Messages

©ErieGarbage, 2016 Page 24

ErieGarbage

5. Team Members Log Sheets
5.1 Mason Toy
Date task duration
11/29/16 Creating Base Templates for home and headers 2.5hrs
12/2/16 Class Diagram redesign part 1 1.5 hrs
12/3/16 Static Analysis & coding 5.5 hrs
12/4/16 New Static Analysis test 1.5 hrs
12/8/16 Fixing Class Diagram Testing Implementation 2.5 hrs

 Total : 13.5 hrs
5.2 Allison Steinmetz
date task duration
12/3/16 Set up document.

Updated Class Diagram and section 3.2.
6 hrs

12/4/16 Added sections 1, 2 and 4. Completed sections 1
and 3. Updated Class Diagram.

9 hrs

12/5/16 Minor modifications to sections 2 and 4
descriptions.

.5 hrs

12/7/16 Updated section 3.2 1.5 hr
12/7/16 Added section 3.3 1.5 hr
12/8/16 Completed section 3.3 2.5 hr
12/9/16 Updated class diagrams and added descriptions 1 hr

 Total : 22 hrs

5.3 Daniel Lopez
date task duration
12/x/16 Implementation 11 hrs
12/4/16 Work on (4.1) Testing section, (2) Static Analysis 2 hr
12/6/16 4.2: Bugs 0.5 hrs
12/6/16 Implementation + 4.3: Errors 5 hrs
12/7/16 Implementation 6 hrs
12/8/16 Implementation + Traffic Analysis (4.1.3 Pentesting) 3 hrs
12/8/16 Brute-force Attacks (4.1.3 Pentesting) 1 hr
12/8/16 Environment setup, HTTPS, 3.3.2 2 hrs
 Total : 30.5 hrs

©ErieGarbage, 2016 Page 25

